On the equivalence of some solution concepts in spatial voting theory*

Valeriy M. Marakulin† Alexei V. Zakharov‡

April 1, 2009

Abstract

We prove that, for a spatial voting setting with non-Euclidean preferences, the locally uncovered set, proposed by Schofield (1999), is closely related to the dimension-by-dimension median of Shepsle (1979). It is shown that every point in the interior of the locally uncovered set can be supported as a dimension-by-dimension median by some set of basis vectors for the space of alternatives. Moreover, for a two-dimensional policy space, the locally uncovered set and the set of dimension-by-dimension medians coincide.

1 Introduction

It is well known that the preference relationship generated by majority voting is not transitive (McKelvey (1976)). Several solution concepts have been investigated in theoretical and empirical voting literature. The uncovered set (Miller (1980), McKelvey (1984)) is a set of all alternatives that beat any other alternative either directly, or with the help of one intermediate alternative (and hence are not “covered”). It is a well-known construct but is difficult to obtain analytically or numerically (Miller (2007), Bianco, Jeliazkov, and Sened (2004)). The locally

*The authors are grateful to Fuad Aleskerov, Joseph Godfrey, Itai Sened, and Nicholas Miller for the many and helpful comments. The work of this paper was carried out when the first author was vising Fellow of European University Institute and he is specially grateful to the Institute for very kind hospitality; the first author is also acknowledged the partial support from Council for Grants (under RF President) and State Aid of Fundamental Science Schools (grant No. SS–4113.2008.6)

†Sobolev Institute of Mathematics RAS, Novosibirsk, Russia. marakul@math.nsc.ru

‡Corresponding author. CEMI RAS, Higher School of Economics, Moscow, Russia. 3ax@mail.ru
uncovered set, or heart (Schofield (1999), Schofield and Sene d (2006)) is another set-based so-

lution concept. A locally uncovered alternative is not covered by any alternative in some small
neighborhood around it. The locally uncovered set is much simpler to calculate; in this work,
we relate it to a well-known point solution concept — the dimension by dimension median.¹

This is also known as the structurally induced equilibrium, it was introduced by Shepsle (1979)
and Shepsle and Weingast (1981). Its principal drawback is that it is not invariant to linear
transformation of voter ideal points.

The following example illustrates the concept of the dimension-by-dimension median, and
how it can depend on the voting agenda. A three-member committee is voting to determine
the allocation \(x = (x_1, x_2) \) of budget to two projects. There are three committee members with
Euclidian preferences:

\[
u_i(x) = -|v_i - x|,
\]

where \(v_i \) is the best alternative of committee member \(i \). Let \(v_1 = (0, 0) \), \(v_2 = (2, 1) \), and

\(v_3 = (1, 2) \). Suppose that the committee votes on each issue separately. Fix any value of \(x_2 \).

Then the preferences of all three members are single-peaked with respect to \(x_1 \). Moreover, the
best value of \(x_1 \) for each member does not depend on the value of \(x_2 \). Hence, voter 3 is median
with respect to the first dimension, with the median position being \(x^*_1 = 1 \). Similarly, the
median with respect to the second dimension is \(x^*_2 = 1 \).

Now suppose that the candidates first vote on the combined budget \(x_1 + x_2 \). The preferences
with respect to combined budget will once again be single-peaked, with the best alternatives
being \(x_1 + x_2 = 2 \) for committee member 1 and \(x_1 + x_2 = 3 \) for members 2 and 3. Hence we
have \(x^*_1 + x^*_2 = 3 \). The second vote is on the distribution of the agreed-upon budget between
the two project. Here, committee member 1 will be the median, preferring \(x^*_1 = x^*_2 \). In the end,
this gives us \(x^*_1 = x^*_2 = \frac{3}{2} \).

One can see that the selection of voting agenda can be used to strategically manipulate
the outcome of the voting process. But what is the set of outcomes that can be achieved by
choosing different voting agendas? Geometrically, the outcomes in the first and second case are
related. One can obtain the second outcome by rotating the best alternative of each voter by 45
degrees, calculating the median position along each dimension, and then rotating the resulting
dimension-by-dimension median back by -45 degrees. Feld and Grofman (1988) proposed a
generalized solution concept, the Schattschneider set, as the locus of all such dimension-by-

¹There are several other solution concepts in the social choice theory, such as the Banks set, the competitive
solution.
dimension median points that could be obtained by some rotation of the set of voter ideal points. They also derived bounds on this set, relating it to another solution concept — the yolk.\footnote{The yolk is the smallest sphere that intersects all median hyperplanes.}

It was shown that the Schattschneider set must lie within \sqrt{K} yolk radii from the center of the yolk, where K is the number of policy space dimensions.

Austen-Smith and Banks (2005) suggested a generalization of this concept, by considering not only rotations, but arbitrary nondegenerate linear transformations. They have proven the existence of such a solution for any linear transformation, and for any concave voter preferences. In this work we take a step further, investigating the properties of the generalized Schattschneider set. We find that this set includes the locally uncovered set; for the two-dimensional case, the two sets coincide.

\section{Results}

Let $L = \mathbb{R}^K$ be a finite-dimensional space of alternatives. Suppose that $\mathcal{I} = \{1, \ldots, N\}$ is the set of voters, with N an odd number. Assume that each voter $i \in \mathcal{I}$ has a binary preference relationship defined over L that is reflected in continuously differentiable and strictly quasi-concave utility function $u_i : L \to \mathbb{R}$. Denote by $U : L \to \mathbb{R}^N$ the profile of utility functions. Denote by \mathcal{U} the space of such utility function profiles on L. Define by \succeq the majority preference relationship on L:

\begin{align*}
\text{For every } x, y \in L, \ x \succeq y \iff \#\{i \in \mathcal{I} \mid u_i(x) \geq u_i(y)\} > \frac{n}{2}.
\end{align*}

Let \succ be the strict counterpart of \succeq.

Denote by $B = (b_1, \ldots, b_K)$ a basis of \mathbb{R}^K. Denote by \mathcal{B} the set of all bases. Let $l(x, b_j) = \{x + \alpha b_j \mid \alpha \in \mathbb{R}\}$ be the line parallel to the j^{th} axis running through x. As the utility functions of the voters are strictly concave, the preferences of all voters are single-peaked on any $l(x, b_j)$, for any $x \in L$ and $B \in \mathcal{B}$. The following definition can now be given.

\textbf{Definition 1} Let $B \in \mathcal{B}$ be a basis. We say that $x^* \in L$ is a dimension-by-dimension median with respect to B, if for any $j \in \mathcal{K} = \{1, \ldots, K\}$, we have $x^* \succ y$ for all $y \in l(x, b_j)$, $y \neq x$.

In the example given in the introduction, the voting procedure where the committee votes separately on each issue corresponds to basis vectors $b_1 = (1, 0)$ and $b_2 = (0, 1)$. On Figure
1(a), the thick dotted line m_1 denotes the set of medians with respect to the first dimension, while allowing the second dimension to vary. Intersection of m_1 with the similarly defined m_2 produces the dimension-by-dimension median. For the second case, the basis vectors are $b_1 = (1, 1)$ and $b_2 = (-1, 1)$ (Figure 1(b)). For this special case of Euclidian preferences, for any two pairs of basis vectors, the median alternative with respect to the first coordinate does not depend on the value of the second coordinate.

This makes the computation of the dimension-by-dimension median for Euclidean preferences very straightforward.

![Figure 1: Dimension-by-dimension medians with Euclidian preferences and three voters](image)

In the general case, the median with respect to the first coordinate does depend on the value of other coordinates; however, Austen-Smith and Banks (2005, Theorem 5.1) have shown that such median always exist:

Theorem 1 (Austen-Smith and Banks, 2005) Suppose that the strategy space for each candidate is some convex and compact subset of L. Then for all $U \in \mathcal{U}$ and $B \in \mathcal{B}$, there exists a dimension-by-dimension median.

Figure 2 shows dimension-by-dimension medians for two families of bases. There are nine voters. The red dot are the ideal points. The thin black line denotes the boundary of the

3Their setting was more general, as they allowed a different social choice rule for each dimension. Here, we only consider majority voting.
Pareto set; the thick black line is the boundary of the locally uncovered set, to be defined below. Loop A is the Schattschneider set, formed by basis vectors $b_1 = (\cos(\theta), \sin(\theta))$ and $b_2 = (-\sin(\theta), \cos(\theta))$ for $\theta \in [0, \pi)$. For loop B, the basis vectors are $b_1 = (\cos(\theta) - \sin(\theta), \cos(\theta) + \sin(\theta))$ and $b_2 = (-\sin(\theta), \cos(\theta))$ for $\theta \in [0, \pi)$.

![Figure 2: The locally uncovered set and two sets of dimension-by-dimension medians](image)

We now give the definition of local covering.

Definition 2 An alternative $x \in L$ is **locally uncovered** if for every its neighborhood $\mathcal{N}(x)$ there exists a neighborhood $\tilde{\mathcal{N}}(x)$ such that for every $y \succ x$, $y \in \tilde{\mathcal{N}}(x)$ there exists $z \in \mathcal{N}(x)$ such that $x \succ z \succ y$. The set

$$
\mathcal{H} = \{x \in L \mid x \text{ is locally uncovered}\}
$$

is called the **heart** or the locally uncovered set.

If an alternative is not locally uncovered, we say that it is locally covered. In terms of sequences it formally means that an alternative x has a neighborhood $\mathcal{N}(x)$ such that there exists a sequence $y_\xi \to x$, such that for every ξ conditions $z_\xi \succ y_\xi \succ x$ and $x \succ z_\xi$ are true for no $z_\xi \in \mathcal{N}(x)$.

5
Local covering is illustrated on Figures 3(a) and 3(b). On the first picture, alternative x is covered in the neighborhood $\mathcal{N}(x)$ by alternative y. The set $\omega(x) = \{ z \mid z \succ x \}$ is the *winset* of x, i.e., the sets of alternatives that are majority-preferred to x^4. Similarly, $\omega(y)$ is the winset of y. In the example, we have $\omega(y) \cap \mathcal{N}(x) \subset \omega(x) \cap \mathcal{N}(x)$. Hence, there is no $z \in \mathcal{N}(x)$ such that $x \succ z \succ y$.

![Figure 3](image_url)

(a) x is locally covered in $\mathcal{N}(x)$ (b) x is not locally covered in $\mathcal{N}(x)$

Figure 3: Examples of locally covered and uncovered alternatives

For the two-dimensional case and Euclidian preferences, the locally uncovered set has a neat geometric interpretation that makes it possible to compute the set easily: An alternative belongs to the locally uncovered set if and only if there are two voter ideal points that satisfy two conditions. First, the two voter ideal points and the alternative are not collinear. Second, there exist two median lines, running through the alternative and each of the two voter ideal points. Thus the boundary of the set is formed by some segments of those median lines that run through at least two voter ideal points (see Figure 2). As we shall see below for two-dimensional case and any profiles the locally uncovered set coincides with the set of dimension-by-dimension medians defined for all possible bases. Moreover, Corollary 1 and Lemma 2 will give us a tool to construct the heart for any kind of particular two-dimensional cases.

Schofield (1999) have shown that the locally uncovered set is, in general, nonempty and closed.

Every locally uncovered point is not Pareto-dominated. Indeed, if x is Pareto dominated by y, i.e., if $u_i(y) > u_i(x)$ for all i then there can be no majority coalitions $S, T \subset \mathcal{I}$ that there is z such that $u_i(z) > u_i(y)$ for all $i \in S$ and $u_i(y) < u_i(x)$ for all $i \in T$.

4The boundary of winset $\omega(x)$ is formed by segments of voter indifference curves that pass through x. Hence, if the preferences are smooth, then in a small enough neighborhood of x, the boundary of $\omega(x)$ is formed by curves close to be lines.
The locally uncovered set and the uncovered set are geometrically unrelated. One can construct examples (see Bianko, Jeliazkov, and Sened, 2005) of alternatives that belong to the uncovered set, but not to the locally uncovered set, and vice versa.

We now proceed to derive the relationship between the locally uncovered set and the dimension-by-dimension medians. First, we provide several supplementary definitions.

Let $S \subseteq I$ be a coalition of voters. Denote by

$$V(x, S) = \{ v \in \mathbb{R}^K \mid (\nabla u_i(x), v) > 0 \ \forall \ i \in S \}$$

the set of directions in which all members of S would agree to move away from x. Let $k = \frac{N+1}{2}$ be the size of the smallest winning coalition. Put

$$W(x) = \bigcup_{S \subseteq I, |S| \geq k} V(x, S).$$

The structure of the set $W(x)$ is illustrated in Figure 4. It is similar in shape to the set $\omega(x)$ in a small neighborhood of x.

Two properties of $W = W(x)$ are immediately apparent. First, the set W is an open cone, i.e., for all $\lambda > 0$ we have $\lambda W \subseteq W$. In general it is not convex. Second, if $\nabla u_i(x) \neq 0$ for all $i \in I$, then we have

$$W \cap (-W) = \emptyset \quad \& \quad L = W \cup (-W) \cup \text{bd}(W \cup (-W)),$$

where $\text{bd}(C)$ denotes the boundary of $C \subset L$.

The following two lemmas present supplementary results.

Lemma 1 If $x \in \mathcal{H}$, then

$$\forall v \in W(x) \ \exists w \in \text{cl}(W(x)) \text{ such that } v + w \notin W(x). \tag{3}$$

5Notice that in view of (2) this is not equivalent to $v + w \in -\text{cl}(W(x))$.

![Figure 4: The set $W(x)$ for $K = 2$ and three voters](image-url)
Lemma 2 An alternative \(x \in L \) is a dimension-by-dimension median for some basis \(B \in \mathcal{B} \) if and only if

\[
\exists v, w \in W(x) \text{ such that } v + w \notin W(x). \tag{4}
\]

The main result of this work follows immediately.

Theorem 2 Suppose that \(x \in \mathcal{H} \). Then there exists a basis \(B \in \mathcal{B} \) such that \(x \) is a dimension-by-dimension median with respect to \(B \).

Finally, for the two-dimensional case, the sets of dimension-by-dimension medians and the locally uncovered set are identical.

Corollary 1 Let \(K = 2 \). Then condition (4) is equivalent to

\[
\forall v \in W(x) \exists w \in W(x) \text{ such that } v + w \notin W(x) \tag{5}
\]

and every dimension-by-dimension median is locally uncovered.

For three and more dimensional policy space there may exist a basis for a dimension-by-dimension median even if the alternative is locally covered, that shows the following example.

Example 1 Let \(L = \mathbb{R}^3 \), \(\mathcal{I} = \{1, 2, 3\} \), \(x = 0 \) and the gradients of the utility functions are:

\[
\nabla u_1(x) = (0, 0, 1), \ \nabla u_2(x) = (1, -1, 1), \ \nabla u_3(x) = (-1, -1, 1).
\]

Consider the following basis:

\[
b_1 = (1, 2, 1), \ b_2 = (-1, 2, 1), \ b_3 = (2, 1, 0).
\]

The alternative \(x \) is a dimension-by-dimension median according to the basis. Really, one can find that \(\langle \nabla u_1(x), b_1 \rangle = 1, \ \langle \nabla u_2(x), b_1 \rangle = 0, \ \langle \nabla u_3(x), b_1 \rangle = -2 \); therefore voter 2 is the median voter according to the basis vector \(b_1 \). Similarly, a median voter exists for all other basis vectors.

On the other hand, \(x \) is not locally uncovered. Moreover, it is Pareto-dominated: if we take \(v = (0, 0, 1) \), we are going to have \(\langle \nabla u_1(x), v \rangle > 0, \ \langle \nabla u_2(x), v \rangle > 0 \), and \(\langle \nabla u_3(x), v \rangle > 0 \). It follows that for some \(\varepsilon > 0 \), alternative \(x + \varepsilon v \) is preferred by all three voters to \(x \). Hence \(x \) is locally covered.
3 Discussion

Austen-Smith and Banks (2005) have shown that the dimension-by-dimension equilibrium exists for any set of basis vectors. Their proof, however, was non-constructive and gave no hint to where the median would actually be located. In this work, we prove that the set of dimension by-dimension medians contains the locally uncovered set. This result signifies the importance of both solution concepts in the social choice theory.

4 Proofs

Proof of Lemma 1.

Without loss of generality put \(x = 0 \).

Necessity. Take \(v \in W \). Let \(v_\varepsilon = \varepsilon \frac{v}{||v||} \). For all sufficiently small \(\varepsilon > 0 \) we have \(v_\varepsilon \succ x \), that is, \(\exists R \subset I, |R| > \frac{N}{2} \), such that \(u_i(v_\varepsilon) > u_i(x), i \in R \). Clearly we have also \(v \in V(R) \). According to Definition 2 take \(N(x) \) to be the open ball of radius \(\delta > 0 \), and \(\tilde{N}(x) \) to be the open ball of radius \(\varepsilon > 0 \). Take \(y_\delta \in N(x) \) such that \(y_\delta \succ v_\varepsilon \succ x \) and \(x \succ y_\delta \).

From Definition 2 it follows that for any \(\delta > 0 \) there exists \(\varepsilon > 0 \) such that the pair \((v_\varepsilon, y_\delta)\) does exist. Hence one can find a sequence \((\varepsilon_\xi, \delta_\xi)\) → 0 such that for \(\xi \to \infty \) the following holds:

(i) The sequence \(\frac{y_\varepsilon}{||y_\varepsilon||} \to s \) and as soon as \(s \) and \(v \) are not collinear (since \(s \notin W \)), we have also \(\frac{||y_\varepsilon||}{\varepsilon_\xi} \to \alpha > 0 \);

(ii) The sequence \(\frac{y_\varepsilon - v_\varepsilon}{||y_\varepsilon - v_\varepsilon||} \to s' \), while \(\frac{||y_\varepsilon - v_\varepsilon||}{\varepsilon_\xi} \to \beta > 0 \);

(iii) \(\exists S, T \subset I, |S| = |T| = k \) such that \(u_i(y_\xi) < u_i(x), \forall i \in S \) & \(u_i(y_\xi) > u_i(v_\xi), \forall i \in T \).

Considering (iii) and the true equality

\[
\frac{v}{||v||} + \frac{||y_\xi - v_\xi||}{\varepsilon_\xi} \cdot \frac{y_\xi - v_\xi}{||y_\xi - v_\xi||} = \frac{||y_\xi||}{\varepsilon_\xi} \cdot \frac{y_\xi}{||y_\xi||}
\]

letting \(\xi \to \infty \) we pass to the limit and obtain

\(s \notin W(x) \) & \(s' \in \text{cl}(V(T)) \) & \(v + \beta ||v||s' = \alpha ||v||s \).

It remains to put \(w = \beta ||v||s' \).
Proof of Lemma 2.

Necessity. Suppose that \(x \) is a dimension-by-dimension median, and for all \(v, w \in W \), we have \(v + w \in W \), or \(W + W \subseteq W \). Since \(W \) is a cone, the condition \(W + W \subseteq W \) implies convexity of \(W \). It follows that both \(W \) and \(-W\) are open and convex. Now by (2) it is easy to see that \(\text{bd}(W) \) is a hyperplane of dimensionality \(K - 1 \). We also must have \(l(x, b_j) \subseteq \text{bd}(W) \) for all \(j \in \mathcal{K} \) since otherwise we have \(l(x, b_j) \cap W \neq \emptyset \) for some \(j \in \mathcal{K} \), so for all \(y \in l(x, b_j) \cap W \) we will have \(y \succ x \), that contradicts the choice of \(x \). But \(l(x, b_j) \subseteq \text{bd}(W) \) is impossible for every \(j \in \mathcal{K} \) as a set of \(K - 1 \) dimensionality cannot contain a basis of \(\mathbb{R}^K \).

Sufficiency. Let \(v, w \in W \) with \(v + w \notin W \). One can think also that each linear functional \(\langle \nabla u_i(x), \cdot \rangle \) is non-zero on the space spanned by \(v \) and \(w \): since \(W \) is open then suitable points from the neighborhoods of \(v \) and \(w \) can always be selected.

Now consider the following linear interval:

\[
(v, v + w) = \{ \lambda v + (1 - \lambda)(v + w) \mid \lambda \in (0, 1) \}.
\]

Remember that for the right hand end point we have \(v + w \notin W \). Further for the interval define \(s = v + w \) if \((v, v + w) \subseteq W \). If it is not so then find a point \(s \in (v, v + w) \) such that \((v, s) \subseteq W \) and \(s \in \text{bd}(W) \). Since \((v, v + w) \not\subseteq W \) it is possible to find such a point. We have \(s \neq 0 \), as \(v \) and \(v + w \) are not collinear. By construction

\[
(v, s) \subseteq W \quad \text{and} \quad s \in \text{bd}(W).
\]

Now it follows that for some majority coalition \(S \) we have \(s \in \text{cl}(V(x, S)) \). It also follows that for some other majority coalition \(T \) we have \(\langle \nabla u_j(x), s \rangle \leq 0, \; j \in T \). So, it follows that there are two majority coalitions \(S \) and \(T \), such that

\[
\langle \nabla u_i(x), s \rangle \geq 0 \; \forall i \in S \quad \text{and} \quad \langle \nabla u_j(x), s \rangle \leq 0 \; \forall j \in T.
\]

From this we conclude that for all \(y \in l(x, s), \; y \neq x \) we have \(x \succ y \), or equivalently that \(x \) is the median along \(l(x, s) \). This is indeed the case, as the maxima of the utility functions for members of \(S \) over \(l(x, s) \) are located in the ray \(l^+(x, s) = \{ x + \alpha s \mid \alpha \geq 0 \} \), while the maxima for the members of \(T \) are located on \(l^-(x, s) = \{ x + \alpha s \mid \alpha \leq 0 \} \).

As both coalitions \(S \) and \(T \) form majority, their intersection \(S \cap T \neq \emptyset \) and forms the set of median voters on \(l(x, s) \). Indeed, for any \(k \in S \cap T \) we must have \(\langle \nabla u_k(x), s \rangle = 0 \). Now take and fix some \(k \in S \cap T \). It follows that \(\langle \nabla u_k(x), v - s \rangle > 0 \) since \(k \in S \) that implies \(\langle \nabla u_k(x), v \rangle > 0 > \langle \nabla u_k(x), w \rangle \) if \(s \neq v + w \) and \(\langle \nabla u_k(x), v \rangle = -\langle \nabla u_k(x), w \rangle > 0 \) for \(s = v + w \).
As a result we have
\[\langle \nabla u_k(x), v \rangle \langle \nabla u_k(x), w \rangle < 0, \quad \langle \nabla u_k(x), s \rangle = 0, \quad \text{and} \quad s \neq 0. \] (6)

Further let us consider another similarly constructed interval \((v, -w)\) where for the right hand end point we have \(-w \in -W\). We can carry out for this interval an exercise similar to the above one and find \(s' \neq 0\) such that \(x\) is the median along \(l(x, s')\), and such that for a corresponding median voter \(m \in \mathcal{I}\) we have\(^6\)
\[\langle \nabla u_m(x), v \rangle \langle \nabla u_k(x), w \rangle > 0, \quad \langle \nabla u_m(x), s' \rangle = 0, \quad \text{and} \quad s' \neq 0. \] (7)

Comparing (6) and (7), we conclude that neither \(\nabla u_k(x)\) and \(\nabla u_m(x)\), nor \(s\) and \(s'\) are collinear. The latter one follows from the fact that both vectors \(s\) and \(s'\) belong to the two-dimensional space spanned by \(v\) and \(w\), and they are nontrivial solutions of the equations \(\langle \nabla u_k(x), s \rangle = 0\) and \(\langle \nabla u_m(x), s' \rangle = 0\) where \(\nabla u_k(x)\) and \(\nabla u_m(x)\) are non-collinear vectors.

Now put \(b_1 = s\) and \(b_2 = s'\): they are the first two vectors of the basis \(B\) that we are constructing. In order to construct the third vector, consider the subspace \(L\) spanned by \(\{b_1, b_2\}\), and any \(s \in W, s \notin L\). Consider an open linear interval \((s, s')\) with \(s' \in L \cap -W\), where one can put \(s' = -v\) for example. Choose \(s\) such that all functionals \(\langle \nabla u_i(x), \cdot \rangle\) are non-constant on \((s, s')\). Further using method applied above one can find \(b_3 \in (s, s')\) (from \(b_3 \notin W\) and \((s, b_3) \subset W\)) such that \(x \succ y\) for all \(y \in l(x, b_3)\). As \(b_3 \notin L\), the vectors \(\{b_1, b_2, b_3\}\) are linearly independent. Repeating this procedure \(K\) times, we construct the needed basis \(B\). The proof is complete.
Q.E.D.

Proof of Corollary 1.

First we need to prove that in two-dimensional case condition (4) implies (5). Let us do it. There are two possibilities:
(i) does exists a pair of vectors \(v, w \in W(x)\) such that \(v + w \in -W\);
(ii) for every pair of vectors \(v, w \in W(x)\) such that \(v + w \notin W\) we have \(v + w \in \text{cl}W\).

Consider (i) and put \(s = -(v + w)\). By construction we have \(v, w, s \in W\). Any pair of these vectors is non-collinear and forms a basis for the two-dimensional space. One can also see that the space is covered by the cones spanned by those vectors\(^7\):
\[L = \text{con}\{v, w\} \cup \text{con}\{v, s\} \cup \text{con}\{s, w\}. \] (8)

Also we have \(v + w = -s\), \(v + s = -w\), \(w + s = -v\), but \(-v, -w, -s \in -W\). Thus the

\(^6\)Notice that in this case \(s' \neq v\) and \(s' \neq -w\) simultaneously.

\(^7\)By definition \(z \in \text{con}\{x, y\}\) if there exist \(\alpha \geq 0, \beta \geq 0\), such that \(z = \alpha x + \beta y\).
space is a union of six convex cones. One edge of each cone lies in \(W \), another one in \(-W\). An arbitrary chosen point \(s' \in W \) must lie in one of the cones in the right hand side of (8). Let it be \(\text{con}\{v, w\} \ni -s \). Then \(s' \) has to belong to either \(\text{con}\{v, -s\} \), or \(\text{con}\{-s, w\} \). If, for instance, \(s' \in \text{con}\{v, -s\} \), then \(-s \in \text{con}\{s', w\} \). Hence, there are \(\alpha > 0 \), \(\beta > 0 \), such that \(w + \alpha s' = -\beta s \) (see Figure 5). This can be repeated for all possible locations of \(s' \) that proves (5) for (i). Moreover it also has to be clear that the value \(M(x) \) can be estimated from below via radius of a disk that being centered in the normalized points \(v, w, s \) is contained in \(W \). So by Lemma 1 item (i) implies \(x \in \mathcal{H} \).

Analyzing all possibilities via (2) one can conclude that the case (ii) is possible only then \(W \) can be presented as an open half-plane being intersected with a finite number of straight lines going through origin. Clearly the property (5) is true now and moreover, the fact that \(x \in \mathcal{H} \) can be checked directly: for \(z \) according to Definition 2 one needs take points lying on the bisectrices of all angels forming \(W \). The proof is complete.

\[\text{Q.E.D.} \]

![Figure 5: If \(K = 2 \) and \(s' \in W \cap \text{con}\{v, w\} \cap \text{con}\{v, -s\} \), then \(-s \in \text{con}\{s', w\} \)](image)

References

